Central respiratory chemosensitivity and cerebrovascular CO2 reactivity: a rebreathing demonstration illustrating integrative human physiology.
نویسندگان
چکیده
One of the most effective ways of engaging students of physiology and medicine is through laboratory demonstrations and case studies that combine 1) the use of equipment, 2) problem solving, 3) visual representations, and 4) manipulation and interpretation of data. Depending on the measurements made and the type of test, laboratory demonstrations have the added benefit of being able to show multiple organ system integration. Many research techniques can also serve as effective demonstrations of integrative human physiology. The "Duffin" hyperoxic rebreathing test is often used in research settings as a test of central respiratory chemosensitivity and cerebrovascular reactivity to CO2. We aimed to demonstrate the utility of the hyperoxic rebreathing test for both respiratory and cerebrovascular responses to increases in CO2 and illustrate the integration of the respiratory and cerebrovascular systems. In the present article, methods such as spirometry, respiratory gas analysis, and transcranial Doppler ultrasound are described, and raw data traces can be adopted for discussion in a tutorial setting. If educators have these instruments available, instructions on how to carry out the test are provided so students can collect their own data. In either case, data analysis and quantification are discussed, including principles of linear regression, calculation of slope, the coefficient of determination (R(2)), and differences between plotting absolute versus normalized data. Using the hyperoxic rebreathing test as a demonstration of the complex interaction and integration between the respiratory and cerebrovascular systems provides senior undergraduate, graduate, and medical students with an advanced understanding of the integrative nature of human physiology.
منابع مشابه
Intra-individual variability in cerebrovascular and respiratory chemosensitivity: Can we characterize a chemoreflex "reactivity profile"?
Intra-individual variability in the magnitude of human cerebrovascular and respiratory chemoreflex responses is largely unexplored. By comparing response magnitudes of cerebrovascular CO2 reactivity (CVR; middle and posterior cerebral arteries; MCA, PCA), central (CCR; CO2) and peripheral respiratory chemoreflexes (PCR; CO2 and O2), we tested the hypothesis that a within-individual reactivity m...
متن کاملCerebrovascular reactivity and hypercapnic respiratory drive in diabetic autonomic neuropathy.
Because abnormalities in cerebrovascular reactivity (CVR) in subjects with long-term diabetes could partly be ascribed to autonomic neuropathy and related to central chemosensitivity, CVR and the respiratory drive output during progressive hypercapnia were studied in 15 diabetic patients without (DAN-) and 30 with autonomic neuropathy (DAN+), of whom 15 had postural hypotension (PH) (DAN+PH+) a...
متن کاملInfluence of indomethacin on ventilatory and cerebrovascular responsiveness to CO2 and breathing stability: the influence of PCO2 gradients.
Indomethacin (INDO), a reversible cyclooxygenase inhibitor, is a useful tool for assessing the role of cerebrovascular reactivity on ventilatory control. Despite this, the effect of INDO on breathing stability during wakefulness has yet to be examined. Although the effect of reductions in cerebrovascular CO(2) reactivity on ventilatory CO(2) sensitivity is likely dependent upon the method used,...
متن کاملCerebrovascular reactivity to hypercapnia is unimpaired in breath-hold divers.
Hypercapnic cerebrovascular reactivity is decreased in obstructive sleep apnoea and congestive heart disease perhaps as a result of repeated apnoeas. To test the hypothesis that repeated apnoeas blunt cerebrovascular reactivity to hypercapnia, we studied breath hold divers and determined cerebrovascular reactivity by measuring changes in middle cerebral artery velocity (MCAV, cm s(-1)) per mmHg...
متن کاملEffects of stabilizing or increasing respiratory motor outputs on obstructive sleep apnea.
To determine how the obstructive sleep apnea (OSA) patient's pathophysiological traits predict the success of the treatment aimed at stabilization or increase in respiratory motor outputs, we studied 26 newly diagnosed OSA patients [apnea-hypopnea index (AHI) 42 ± 5 events/h with 92% of apneas obstructive] who were treated with O2 supplementation, an isocapnic rebreathing system in which CO2 wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Advances in physiology education
دوره 40 1 شماره
صفحات -
تاریخ انتشار 2016